There are only finitely many Diophantine quintuples
نویسنده
چکیده
A set of m positive integers is called a Diophantine m-tuple if the product of its any two distinct elements increased by 1 is a perfect square. Diophantus found a set of four positive rationals with the above property. The first Diophantine quadruple was found by Fermat (the set {1, 3, 8, 120}). Baker and Davenport proved that this particular quadruple cannot be extended to a Diophantine quintuple. In this paper, we prove that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples.
منابع مشابه
The Number of Diophantine Quintuples
A set {a1, . . . , am} of m distinct positive integers is called a Diophantine m-tuple if aiaj + 1 is a perfect square for all i, j with 1 ≤ i < j ≤ m. It is known that there does not exist a Diophantine sextuple and that there exist only finitely many Diophantine quintuples. In this paper, we first show that for a fixed Diophantine triple {a, b, c} with a < b < c, the number of Diophantine qui...
متن کاملOn the number of Diophantine m-tuples
A set of m positive integers is called a Diophantine m-tuple if the product of any two of them is one less than a perfect square. It is known that there does not exist a Diophantine sextuple and that there are only finitely many Diophantine quintuples. On the other hand, there are infinitely many Diophantine m-tuples for m = 2, 3 and 4. In this paper, we derive asymptotic extimates for the numb...
متن کاملOn the Rank of Elliptic Curves Coming from Rational Diophantine Triples
We construct a family of Diophantine triples {c1(t), c2(t), c3(t)} such that the elliptic curve over Q(t) induced by this triple, i.e.: y = (c1(t) x + 1)(c2(t) x + 1)(c3(t) x + 1) has torsion group isomorphic to Z/2Z× Z/2Z and rank 5. This represents an improvement of the result of A. Dujella, who showed a family of this kind with rank 4. By specialization we obtain two examples of elliptic cur...
متن کاملNonextendibility of D(-1)-triples of the form {1, 10, c}
Let n be an integer. A set of positive integers {a1,a2, . . . ,am} is said to have the property D(n) if aiaj +n is a perfect square for all 1 ≤ i < j ≤m. Such a set is called a Diophantine m-tuple (with the property D(n)) or a D(n)-m-tuple. In fact, this problem was first studied by Diophantus for the case n= 1 and he found a set of four positive rationals with the above property: {1/16,33/16,1...
متن کاملOn Diophantine Quadruples of Fibonacci Numbers
We show that there are only finitely many Diophantine quadruples, that is, sets of four positive integers {a1, a2, a3, a4} such that aiaj +1 is a square for all 1 ≤ i < j ≤ 4, consisting of Fibonacci numbers.
متن کامل